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Photodimerizations of 3-Methoxy-1,5-azulenequinone via Consecutive Pericyclic Reactions
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3-Methoxy-1,5-azulenequinone gave dimers when
irradiated with a high-pressure mercury lamp. The product
distribution was dependent on the polarity of the solvent. In a
polar solvent, a head-to-head dimer was predominant whereas a
head-to-tail dimer was mainly formed in a nonpolar solvent.

Previously, we have observed that irradiation of 3-bromo-
1,5-azulenequinone (1) and 3-bromo-1,7-azulenequinone (2)
gave the corresponding head-to-head dimers 3 and 4 in
acetonitrile, respectively.l It was speculated that they were
formed through [2+2]nt or [6+6]nt and the following [4+2]n
cycloadditions. In this paper, we report photodimerization of 3-
methoxy-1,5-azulenequinone (§), whose product distributions
were dependent on the solvent polarity.

When 5 was irradiated in dichloromethane with a 400 W
mercury lamp, three products (6-8) were isolated in 6, 10, and
24% vyields, respectively. The structure of 6 was determined to
be a head-to-head dimer from the comparison of the spectral data?
with those of the dimer 3. Product 7 was also a dimer of 5. The
1H NMR spectrum of 7 showed five methine and five olefinic
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protons, which implied that 7 has an unsymmetrical structure.
The 'H NMR spectral features of 7 are quite similar to those of 3
and 6. From these evidences, the structure of 7 was assigned to
be a crisscross type dimer as shown in Scheme.

The 'H NMR spectrum of 8 showed a set of methylene

‘protons, four singlet olefinic protons, two olefinic protons

coupled each other with a coupling constant of 8.4 Hz, and an
olefinic proton coupled with the one of the methylene protons.
Compared with the NMR data of the typical [4+2]n cycloadducts
of 1 or 2 and dienophiles,? 8 must be the secondary product of a
[4+2]m cycloadduct of 5. The cycloaddition would proceed
photochemically in a trans-mode as observed in the reaction of
the photochemical dimerization of tropone# and the photoinduced
cycloaddition reaction between 9,10-dicyanoanthracene and
tropone.5 The relief of the ring strain in the primary zrans-fused
[4+2]m cycloadduct (9) assisted migration of the double bond.
The regiochemistry of 8 was speculated as shown in
Scheme from the NOE experiment that the peak intensity of the -
proton (Hp) at 8 6.81 was not enhanced when the methine proton
(Hyp) at 8 4.23, which was assigned to the bridge head proton,
was irradiated. An alternative structure 10 could be eliminated.
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Table 1. Product distribution (%)2 of photodimerization of 5
Solvent ()b Time (h) 6 7 8 12
Benzene (2.27) 5.5 - 27 24 6
CH>Cl» (8.9) 5.5 6 10 21-24 -
Acetone (20.5) 5.5 21 6 9 -
CH3CN (37.5) 5.5 24 - 7 -

aYields were determined by the 1H NMR spectrum of the reaction
mixture after removal of 5. PNumbers in parentheses are
dielectric constants of solvents.

The stereochemistry of 8 was assigned from the chemical shift of
Hp, at § 6.81, which appears at rather lower magnetic field as the
proton at the y-position of a 3, y-unsaturated ketone system. The
low chemical shift can be explained on the basis that Hp in 8 is
closer to the side of the carbonyl group of the cyclopentenone
than the corresponding Hp in 11 from inspections of molecular
models.

Next, we investigated photoreaction of 5 in a less polar
benzene, in which the head-to-head dimer 6 did not form as
shown in Table 1. A new product 12 was obtained in 6% yield.
In the TH NMR spectrum of 12, three kinds of methine protons
appeared at 6 3.17 (2H, tdd, J=5.3, 3.3, 1.3 Hz), 3.33 (2H, m),
and 3.73 (2H, t, J=5.3 Hz) as well as two olefinic signals at &
5.62 (2H) and 6.49 (2H) and a singlet methoxyl signal at & 3.97
(6H). The 13C NMR spectrum showed eleven lines, which
indicated that 12 had a symmetrical structure. The splitting
patterns of three methine protons led the structure of 12 to a
[4+4]R-[24+2] head-to-tail dimer.

As summarized in Table 1, the head-to-head dimer 6 was
the main product in a more polar acetonitrile. When the polarity
of solvents is reduced, the yields of the head-to-tail dimer 12 and
the crisscross type product 7 were increased. In a less polar
solvent, a head-to-tail and a crisscross alignments should be
favored over a head-to-head approach to reduce dipole-dipole
interactions. In a polar solvent, solvated molecules could come
together to react in a head-to-head arrangement. These are quite
similar to the solvent effects® of the photochemical dimerization
of 2-cycloalkenones, in which the anti isomers were formed in a
less polar solvent.

Thus, the product distributions were sensitive to the
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solvent polarity.
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